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Lecture 8 Highlights 
Phys 402 

 
Degenerate Perturbation Theory 

We considered the problem of degenerate perturbation theory.  Degeneracy is when 
you have two or more distinct eigenstates of the system (i.e. distinct lists of quantum 
numbers) that have the same eigen-energy.  We discussed three examples: 

1) The un-perturbed Hydrogen atom (without spin) has degeneracy 𝑝𝑝 = 𝑛𝑛2, where 𝑛𝑛 is the 
principal quantum number.  The un-perturbed problem (which you studied in detail in Phys 
401 and is now considered completely ‘known’) has eigen-energies 𝐸𝐸𝑛𝑛0 = −13.6 𝑒𝑒𝑒𝑒/𝑛𝑛2, 
and eigenfunctions 𝜓𝜓𝑛𝑛,ℓ,𝑚𝑚ℓ

0 (𝑟𝑟,𝜃𝜃,𝜑𝜑) (or |𝑛𝑛, ℓ,𝑚𝑚ℓ⟩  in ket notation), where 𝑛𝑛 = 1, 2, 3, … , 
and ℓ runs from 0 to 𝑛𝑛 − 1, and 𝑚𝑚ℓ runs from −ℓ to +ℓ.  For 𝑛𝑛 = 2 we saw that there are 
𝑝𝑝 = 22 = 4 degenerate states |2,0,0⟩, |2,1,1⟩, |2,1,0⟩, |2,1,−1⟩. 

2) The two-dimensional harmonic oscillator with un-perturbed Hamiltonian 𝐻𝐻0 = 𝑝𝑝𝑥𝑥2
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+ 𝑝𝑝𝑦𝑦2
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(𝑥𝑥2 + 𝑦𝑦2).  This problem separates in to two one-dimensional harmonic oscillators and 
the eigenvalues are 𝐸𝐸𝑛𝑛,𝑚𝑚

0 = ℏ𝜔𝜔(𝑛𝑛 + 𝑚𝑚 + 1), where 𝑛𝑛,𝑚𝑚  independently run 0, 1, 2, 3, … 
and the un-perturbed eigenfuctions are product wavefunctions of the 1D harmonic 
oscillator in the x- and y-directions |𝑛𝑛,𝑚𝑚⟩ = |𝑛𝑛⟩𝑥𝑥|𝑚𝑚⟩𝑦𝑦.  These states have a degeneracy of 
𝑝𝑝 = 𝑛𝑛 + 𝑚𝑚 + 1.  The ground state 𝑛𝑛 = 𝑚𝑚 = 0 is non-degenerate, but the first excited state 
with |1,0⟩ and |0,1⟩ is 2-fold degenerate with 𝐸𝐸1,0

0 = 𝐸𝐸0,1
0 = 2ℏ𝜔𝜔. 

3) The three-dimensional infinite cubical well has an un-perturbed Hamiltonian of 𝐻𝐻0 =
𝑝𝑝𝑥𝑥2

2𝑚𝑚
+ 𝑝𝑝𝑦𝑦2

2𝑚𝑚
+ 𝑝𝑝𝑧𝑧2

2𝑚𝑚
+ 𝑒𝑒(𝑥𝑥,𝑦𝑦, 𝑧𝑧), where  

𝑒𝑒(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = �0   for 0 < 𝑥𝑥 < 𝑎𝑎,  and 0 < 𝑦𝑦 < 𝑎𝑎, and 0 < 𝑧𝑧 < 𝑎𝑎
∞    otherwise

.  This is a cubical region 
of space where the particle of mass 𝑚𝑚 is trapped.  This problem is also separable into three 
one-dimensional problems.  The un-perturbed eigenvlaues are 𝐸𝐸𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧

0 = 𝜋𝜋2ℏ2

2𝑚𝑚𝑎𝑎2
�𝑛𝑛𝑥𝑥2 +

𝑛𝑛𝑦𝑦2 + 𝑛𝑛𝑧𝑧2�, where the three quantities 𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧 are independent positive integers.  The un-
perturbed eigenfunctions are the products of the 1D infinite square well eigenstates: 

𝜓𝜓𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧
0 (𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �2
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�
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sin �𝑛𝑛𝑥𝑥𝜋𝜋
𝑎𝑎
𝑥𝑥� sin �𝑛𝑛𝑦𝑦𝜋𝜋

𝑎𝑎
𝑦𝑦� sin �𝑛𝑛𝑧𝑧𝜋𝜋

𝑎𝑎
𝑧𝑧� .  The ground state 𝑛𝑛𝑥𝑥 =

𝑛𝑛𝑦𝑦 = 𝑛𝑛𝑧𝑧 = 1 is non-degenerate.  However the first excited state is triply degenerate (𝑝𝑝 =

3) since states |2,1,1⟩, |1,2,1⟩, and |1,1,2⟩ all have the same energy, namely 6 𝜋𝜋2ℏ2

2𝑚𝑚𝑎𝑎2
. 

 
We note that the perturbation theory that we have developed so far will not work for these 
degenerate systems because of the zeros in the denominator of the first-order correction to 
the eigen-functions: 
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To proceed with degenerate perturbation theory we focus on a particular 𝑝𝑝-fold degenerate 
sub-space.  The degenerate eigenfunctions obey 𝐻𝐻0𝜓𝜓𝑗𝑗0 = 𝐸𝐸0𝜓𝜓𝑗𝑗0 with �𝜓𝜓𝑗𝑗0�𝜓𝜓𝑙𝑙0� = 𝛿𝛿𝑗𝑗,𝑙𝑙 and 
𝑗𝑗, 𝑙𝑙 = 1, 2, 3, … 𝑝𝑝.  Note that all 𝑝𝑝 states have a common un-perturbed energy 𝐸𝐸0. 
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 Now, we posit the existence of a “magic linear combination” of these 𝑝𝑝 degenerate 
states that will simplify the calculation of the first-order correction to the energy: 
    𝜓𝜓0 = ∑ 𝛼𝛼𝑗𝑗𝜓𝜓𝑗𝑗0

𝑝𝑝
𝑗𝑗=1 , 

where the 𝛼𝛼𝑗𝑗  are unknown at this point, but we expect 𝜓𝜓0 to be normalized.  This 
wavefunction has the same eigenenergy 𝐸𝐸0 as each of its constituents 𝜓𝜓𝑗𝑗0.   

Now consider the perturbed Hamiltonian 𝐻𝐻 = 𝐻𝐻0 + 𝐻𝐻′ and the new Schrodinger 
equation 𝐻𝐻𝜓𝜓 = 𝐸𝐸𝜓𝜓.  We do the standard perturbation theory expansion, using this linear 
combination state as the zeroth-order wavefunction: 
  ...2210 +++= ψλλψψψ        
  ...2210 +++= EEEE λλ        
and yielding (to first order):  
  01100101 ': ψψψψλ EE +=Η+Η     
Projecting with ⟨𝜓𝜓𝑘𝑘0| (where 𝑘𝑘 is chosen arbitrarily from the degenerate sub-space) yields 
the following result 
  ∑ 𝑊𝑊𝑘𝑘,𝑗𝑗

𝑝𝑝
𝑗𝑗=1 𝛼𝛼𝑗𝑗 = 𝐸𝐸1𝛼𝛼𝑘𝑘, where 𝑘𝑘 = 1, 2, 3, … 𝑝𝑝 and 𝑊𝑊𝑘𝑘,𝑗𝑗 ≡ �𝜓𝜓𝑘𝑘0�𝐻𝐻′�𝜓𝜓𝑗𝑗0� is the 

perturbing Hamiltonian matrix element between states 𝑘𝑘 and 𝑗𝑗 in the unperturbed basis of 
degenerate states. 

This is in fact a matrix-vector eigenvalue problem: 
  𝑊𝑊� �⃗�𝛼 = 𝐸𝐸1�⃗�𝛼, 
where the eigenvalues are the desired first-order corrections to the energies, and the 
eigenvectors �⃗�𝛼 are the coefficients in the “magic linear combination” posited above (�⃗�𝛼 is 
a vector of length 𝑝𝑝).  In other words, these magic linear combinations of the degenerate 
eigenstates serve to diagonalize the perturbation matrix in the degenerate sub-space.  These 
are the “good wavefunctions” in the presence of the perturbation.  Note that the “magic 
linear combination” will be different for each choice of perturbation, in general.  Also note 
that 𝑊𝑊�  is a 𝑝𝑝  by 𝑝𝑝  matrix, admitting in general 𝑝𝑝  eigenvalues 𝐸𝐸1  and corresponding 
eigenvectors �⃗�𝛼.   
 
 As an example, we went back to the 2D harmonic oscillator in the first excited state 
with |1,0⟩  and |0,1⟩  and added the perturbing potential 𝐻𝐻′ = 𝐾𝐾′𝑥𝑥𝑦𝑦 , with 𝐾𝐾′ ≪ 𝐾𝐾  (to 
ensure that perturbation theory is valid).  This perturbation couples the 𝑥𝑥 and 𝑦𝑦 motion.  By 
examining the sign of 𝐻𝐻′ we see that it tends to favor ‘out of phase’ motion between the 𝑥𝑥 
and 𝑦𝑦 components of the harmonic oscillator (assuming 𝐾𝐾′ > 0).  First evaluate the 𝑊𝑊�  
matrix for this perturbation, writing 𝑥𝑥 = 1

√2𝛽𝛽
(𝑎𝑎+ + 𝑎𝑎−), and 𝑦𝑦 = 1

√2𝛽𝛽
(𝑏𝑏+ + 𝑏𝑏−), where 

𝛽𝛽2 = 𝑚𝑚𝑚𝑚
ℏ

, and 𝑎𝑎+ and 𝑏𝑏+ are the raising operators for the 𝑥𝑥-component and 𝑦𝑦-component 
harmonic oscillator wavefunctions, respectively.  The 𝑊𝑊�  matrix becomes, 
  𝑊𝑊� = �0 𝜅𝜅

𝜅𝜅 0�, where 𝜅𝜅 = 𝐾𝐾′/2𝛽𝛽2. 
To get non-trivial solutions to the eigenvalue problem we demand that 
  𝑑𝑑𝑒𝑒𝑡𝑡�𝑊𝑊� − 𝐸𝐸11�� = 0. 
This yields two eigenvalues 𝐸𝐸1 = ±𝜅𝜅 = ±𝐾𝐾′/2𝛽𝛽2 .  The higher energy state is the 
‘symmetric mode’ 𝜓𝜓1���� = 1

√2
(|1,0⟩ + |0,1⟩)  with 𝐸𝐸 ≃ 2ℏ𝜔𝜔 + 𝐾𝐾′/2𝛽𝛽2 , and the lower 
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energy state is the ‘beating mode’ 𝜓𝜓2���� = 1
√2

(|1,0⟩ − |0,1⟩) with 𝐸𝐸 ≃ 2ℏ𝜔𝜔 − 𝐾𝐾′/2𝛽𝛽2, in 
which the x- and y-motions are out of phase.  This kind of ‘anti-correlation’ of the x- and 
y-motion is favored by the perturbing Hamiltonian.  The perturbation has ‘lifted the 
degeneracy’ (or destroyed the degeneracy) and created two distinct energy eigenstates. 
 Note that even after including the perturbation some of the resulting eigenvalues 
can still be degenerate.  Degeneracies arise from symmetries of the Hamiltonian.  If the 
perturbation only partially destroys those symmetries then some degeneracies will remain.  
This is fine as it does not violate any assumption made in deriving these results. 
       
Stark Effect in Hydrogen.   

A Hydrogen atom placed in a uniform electric field 𝐸𝐸�⃗ = 𝐸𝐸0�̂�𝑧 (where �̂�𝑧 is the unit 
vector in the z-direction, as opposed to the z-coordinate quantum operator) will be 
“stretched” out and have new energy eigenvalues.  For small electric field we can treat this 
as a perturbation ℋ′ = 𝑒𝑒𝐸𝐸0𝑧𝑧 = 𝑒𝑒𝐸𝐸0𝑟𝑟 cos 𝜃𝜃.  The un-perturbed Hydrogen atom has a non-
degenerate ground state labeled by the three quantum numbers 𝑛𝑛 = 1, ℓ = 0,𝑚𝑚 = 0, with 
energy eigenvalue 𝐸𝐸10 = −13.6 𝑒𝑒𝑒𝑒.  The first excited state (𝑛𝑛 = 2) is 4-fold degenerate, 
with states |2 0 0⟩, |2 1 1⟩, |2 1 0⟩, 𝑎𝑎𝑛𝑛𝑑𝑑 |2 1 − 1⟩ all having energy 𝐸𝐸20 = −13.6/22 𝑒𝑒𝑒𝑒.  
The next step is to calculate the W-matrix for the perturbing Hamiltonian.  Most of the 
matrix elements turn out to be zero for “symmetry reasons” that we will explore in more 
detail later.  The result for the W-matrix is: 

𝑊𝑊� = −3𝑎𝑎0𝑒𝑒𝐸𝐸0 �
0 0
0 0

1 0
0 0

1 0
0 0

0 0
0 0

�, 

where 𝑎𝑎0 is the Bohr radius.  The rest of this problem is assigned in Homework 4. 


